Analyzing the aerodynamic damping of impellers with splitter blades using the fluid solid weak coupling method and its conclusions
AD |
The content of this article comes from the internet. If it does not match the actual situation or there is infringement, please contact to delete it
The content of this article comes from the internet. If it does not match the actual situation or there is infringement, please contact to delete it. This article only debuted on today's headlines, handling is mandatory!
With the continuous development of aircraft engine technology, the compressor of aviation engines is moving towards high-performance, small volume, and lightweight. However, during this process, the flutter problem of the fan blades gradually emerged. In order to improve the aeroelastic stability margin of turbomachinery, scholars have proposed many flutter suppression methods, including increasing damping, changing blade vibration characteristics, and adopting non harmonic design. With the continuous development of computational fluid dynamics and computer hardware, aerodynamic damping has gradually attracted widespread attention.
The progress in computational fluid dynamics and the improvement of experimental data have led to a shift in the study of aerodynamic damping from experimental to numerical calculations. However, most studies are limited to analyzing the impeller structure of a single blade or the same blade, and there is relatively little research on aerodynamic damping for impellers with large and small blade structures.
The research object of this article is the centrifugal impeller of a small aircraft turboshaft engine, which mainly provides auxiliary power for the aircraft. The goal of this study is to conduct aerodynamic damping simulation on centrifugal impellers with large and small blade structures. By analyzing the vibration state of the impeller, a corresponding aerodynamic damping calculation model is established, and the influence of the circumferential position of the splitter blades on the aerodynamic damping of the impeller is explored. The purpose of the study is to provide strong references for the design and simulation of impeller structures with large and small blades.
In order to achieve this goal, modal analysis of the blades was first conducted to determine their natural frequencies and corresponding vibration modes. Then, harmonic response analysis was conducted to obtain the vibration response of the centrifugal impeller under unsteady aerodynamic forces. Finally, a fluid structure coupling analysis was conducted using finite element software. Through dynamic grid technology, the points on the impeller blades were subjected to harmonic vibration according to specific vibration modes to obtain the unsteady aerodynamic damping of the blades within a specific frequency range.
The research results indicate that aerodynamic damping plays an important role in the vibration of centrifugal impellers. The circumferential position of the splitter blades has a significant impact on aerodynamic damping, and different positions of the splitter blades can lead to different aerodynamic damping of the impeller. In addition, this article also explored the relationship between aerodynamic damping and blade surface flow field, and found that the magnitude of aerodynamic damping mainly depends on the work done by the aerodynamic force on the blade within a cycle. Therefore, changes in circumferential position will affect the amplitude and phase of unsteady pressure on the blade surface, thereby affecting aerodynamic damping.
This study provides a new approach for the design of impellers with large and small blade structures, where the circumferential position of the splitter blades can be adjusted appropriately according to demand to improve the aerodynamic and elastic stability of the impeller. This has positive implications for the performance and stability of aircraft engines.
The above content and information are all sourced from the internet. The author of this article has no intention of targeting or alluding to any real country, regime, organization, race, or individual. The relevant data and theoretical research are based on online materials. The above content does not mean that the author agrees with the laws, rules, opinions, behaviors, and is responsible for the authenticity of the relevant information in the article. The author of this article is not responsible for any issues arising from the above or related matters, nor assumes any direct or indirect legal responsibility.
Disclaimer: The content of this article is sourced from the internet. The copyright of the text, images, and other materials belongs to the original author. The platform reprints the materials for the purpose of conveying more information. The content of the article is for reference and learning only, and should not be used for commercial purposes. If it infringes on your legitimate rights and interests, please contact us promptly and we will handle it as soon as possible! We respect copyright and are committed to protecting it. Thank you for sharing.(Email:[email protected])
Mobile advertising space rental |
Tag: the Analyzing aerodynamic damping of impellers with splitter blades
Hangzhou cancels live streaming, what's the next step for the three sheep?
NextFoxconn, under investigation!
Guess you like
-
China Leads in Developing IEC 63206 International Standard, Driving Global Innovation in Industrial Process Control System RecordersDetail
2025-01-18 11:06:14 1
-
The 2024 Micro-Short Series Industry Ecological Insight Report: 647,000 Job Opportunities, Rise of Diversified Business Models, and High-Quality Content as the Future TrendDetail
2025-01-17 17:33:01 1
-
Global PC Market Shows Moderate Recovery in 2024: High AIPC Prices a Bottleneck, Huge Growth Potential in 2025Detail
2025-01-17 11:02:09 1
-
Bosch's Smart Cockpit Platform Surpasses 2 Million Units Shipped, Showcasing Strength in Intelligent Driving TechnologyDetail
2025-01-17 10:55:29 1
-
YY Guangzhou Awarded "2024 Network Information Security Support Unit" for Outstanding ContributionsDetail
2025-01-17 10:43:28 1
-
TikTok CEO Invited to Trump's Inauguration, Biden Administration May Delay BanDetail
2025-01-16 20:06:11 1
-
Douyin Denies Opening International Registration: Overseas IPs Don't Equate to Overseas Registration; Platform Actively Combats Account ImpersonationDetail
2025-01-16 14:26:12 1
-
Lei Jun, Xiaomi's founder, chairman, and CEO, has set a new goal: learning to drive a forklift!Detail
2025-01-15 10:22:30 11
-
ByteDance Scholarship 2024: Fifteen Outstanding Doctoral Students Awarded RMB 100,000 Each to Advance Frontier Technology ExplorationDetail
2025-01-14 15:56:39 1
-
Fliggy Launches "Peace of Mind for the New Year" Service Initiative to Ensure Smooth Travel During the Year of the Snake Spring Festival RushDetail
2025-01-14 15:24:53 1
-
Arm's Massive Fee Hike and Potential In-House Chip Development: A Precursor to a Seismic Shift in the Chip Industry?Detail
2025-01-14 11:02:36 1
-
Adobe Firefly Launches: Generative AI Suite Revolutionizes Image and Video Processing EfficiencyDetail
2025-01-14 10:46:39 1
-
Chinese New Year Elements Sell Like Hotcakes Overseas: Cross-border E-commerce "Spring Festival Economy" Booms, Cainiao Overseas Warehouses Help Merchants Capture Market ShareDetail
2025-01-13 14:17:50 1
-
China Railway's 12306 System Successfully Navigates Spring Festival Travel RushDetail
2025-01-13 12:56:54 1
-
Handan, Hebei Province Successfully Tests First Low-Altitude Drone Delivery Route, Ushering in a New Era of Smart LogisticsDetail
2025-01-13 12:50:13 1
-
Kuaishou Leads in Developing Anti-Fraud Industry Standards, Contributing to a Secure and Reliable Short-Video CommunityDetail
2025-01-13 09:47:32 11
-
Microsoft Offers Top Salaries to Retain AI Talent: AI Software Engineers Earn Over $400,000 AnnuallyDetail
2025-01-12 17:28:34 11
- Detail
-
Chang'e-5 Mission Unveils Secrets: New Discoveries Regarding Lunar Magnetic Field Strength and Deep Dynamics 2 Billion Years AgoDetail
2025-01-10 11:42:44 11
-
SenseTime's "Day Day New" Multimodal Large Model: Native Fusion Enables Diverse ApplicationsDetail
2025-01-10 11:40:40 21